\qquad
\qquad
PRACTICE TEST: CHEMICAL EQUATIONS AND REACTIONS TEST

PART 1: MULTIPLE CHOICE (1 mark each = 16 marks)

1. In the compound $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ there are \qquad magnesium atoms:
a. 0
b. 1
c. 2
d. 3
2. In the compound $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ there are \qquad oxygen atoms:
a. 2
b. 4
c. 6
d. 8
3. In the compound $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ there are \qquad perchlorate ions:
a. 1
b. 2
c. 4
d. 8
4. In the compound $\mathrm{Mg}_{3}\left(\mathrm{PO}_{3}\right)_{2}$ there are \qquad atoms in total:
a. 8
b. 9
c. 10
d. 11
5. How many atoms of oxygen are on the product side of the following unbalanced equations?

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

a. 2
b. 3
c. 6
d. 8
6. Which of the following are true regarding the effects of increasing temperature on reacting particles?
I. Increased temperature causes more collisions to occur between reactant particles.
II. Increased temperature causes more intense collisions to occur between reactant particles.
III. Increased temperature allows reactant molecules to line up better prior to colliding with one another.
IV. Increased temperature makes the reactant particles move faster prior to colliding with one another
a. I, II and III only.
b. II, III, and IV only
c. I, II, and IV only
d. I, II, III, and IV
7. Which of the following correctly balances the equation:

$$
\mathrm{Cs}_{2} \mathrm{CO}_{3}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \ldots \mathrm{CsNO}_{3}+\ldots \mathrm{MgCO}_{3}
$$

a. $2 \mathrm{CsNO}_{3}+\mathrm{MgCO}_{3}$
b. $2 \mathrm{CsNO}_{3}+2 \mathrm{MgCO}_{3}$
c. $\mathrm{CsNO}_{3}+2 \mathrm{MgCO}_{3}$
d. $\mathrm{CsNO}_{3}+\mathrm{MgCO}_{3}$
8. Which of the following reactants would balance the equation: \qquad $+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
a. CH_{2}
b. $2 \mathrm{CH}_{2}$
c. CH_{4}
d. $2 \mathrm{CH}_{4}$
\qquad
Date: \qquad
9. Which of the following equations is balanced?
I. $2 \mathrm{KCl}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{KNO}_{3}+\mathrm{CaCl}_{2}$
II. $\mathrm{FeCl}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{KCl}$
III. $2 \mathrm{Na}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
a. I and II only
b. I and III only
c. II and III only
d. I, II and III
10. Considering the illustration below, if four molecules of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ undergo decomposition, how many molecules of oxygen and hydrogen will form?

Oxygen Molecules	Hydrogen Molecules
1	1
2	1
2	2
4	4

11. Which of the following correctly balances the equations:
$\ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow$ _ $_{4} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}+\ldots \mathrm{O}_{2}$
a. $1,1,1,1$
b. $4,4,1,4$
c. $6,6,1,6$
d. $2,2,1 / 2,2$

Use the following diagram to answer question 12, 13 and 14.

12. What are the reactants in the diagram above?
a. Mg and O_{2}
b. Mg and H_{2}
c. Mg and $\mathrm{H}_{2} \mathrm{O}$
d. Mg and HCl
13. What gas is produced in the diagram above?
a. a. Cl_{2}
b. b. O_{2}
c. H_{2}
d. d. Mg
19. What is the balanced equation for the reaction in the diagram above?
a. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgH}_{2}+\mathrm{Cl}_{2}$
b. $2 \mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+2 \mathrm{MgH}_{2}$
c. $\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$
d. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{MgCl}_{2}$
15. Increasing reactant concentrations increases reaction rates because it:
a. causes more collisions to occur between reactant particles
b. causes more intense collisions to occur between reactant particles
c. allows reactant molecules to line up better prior to colliding with one another
d. makes the reactant particles move faster prior to colliding with one another
\qquad

PART 2: MATCHING (1 mark each = $\mathbf{1 0}$ marks)

Please match the equation on the left with the best type of reaction on the right. Note that the type of reaction may be used more or less than once.

Equation

1. \qquad $\star+\square \rightarrow \star \square$
2. \qquad $\mathrm{DC} \rightarrow \mathrm{D}+\mathrm{C}$
B. decomposition
3.

Ammonium hydroxide + copper fluoride \rightarrow ammonium fluoride + copper hydroxide
4.

H ■ $+\square \mathrm{OH} \rightarrow \square ■+\mathrm{H}_{2} \mathrm{O}$
5. \qquad

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

F. neutralization
D. double replacement
6. $-\quad 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
E. combustion
A. synthesis

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

7. \qquad

$$
X Y+Z \rightarrow X Z+Y
$$

8. __ $\quad \mathrm{PAt}+\mathrm{BUt} \rightarrow \mathrm{BAt}+\mathrm{PUt}$
9. \qquad $\mathrm{CaCl}_{2}+\mathrm{Br} \rightarrow \mathrm{BrCl}_{2}+\mathrm{Ca}$
10. \qquad 10. $\quad 2 \mathrm{Mg}+\mathrm{F}_{2} \rightarrow 2 \mathrm{MgF}$
11. - $\quad \mathrm{XY}+\mathrm{Z} \rightarrow \mathrm{XZ}+\mathrm{Y}$

PART 3: WRITTEN RESPONSE (20 marks)

Balance the following 10 equations by writing in the correct coefficients in the spaces provided (1 mark each). ALSO state the type of reaction each is in the right-hand column (1 mark each).

Reactions to Balance	Type of Reaction
1. __ $\mathrm{KCl}+\ldots \ldots \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \ldots \ldots \mathrm{KOH}+\ldots \ldots \mathrm{MgCl}_{2}$	-
2. \qquad $\mathrm{Cu}+$ \qquad $\mathrm{FeCl}_{2} \rightarrow$ \qquad $\mathrm{Fe}+$ \qquad CuCl_{3}	
3. \qquad $\mathrm{Ni}+$ \qquad $\mathrm{I}_{2} \rightarrow$ \qquad NiI_{3}	
4. \qquad $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2}+$ \qquad O_{2}	-
5. $\ldots _\mathrm{CuBr}_{2}+\ldots \mathrm{CaSO}_{4} \rightarrow \ldots \mathrm{CaBr}_{2}+\ldots \mathrm{CuSO}_{4}$	
6. __ $\mathrm{HF}+\ldots \ldots \mathrm{KOH} \rightarrow \ldots \ldots \mathrm{KF}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}$	-
7. \qquad $\mathrm{Na}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}+$ \qquad H_{2}	
8. \qquad H \qquad $\mathrm{Sn}(\mathrm{OH})_{2} \rightarrow$ \qquad $\mathrm{SnCl}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$	-
9. \qquad $\mathrm{MnBr}_{3} \rightarrow$ \qquad $\mathrm{Mn}+$ \qquad Br_{2}	
10. ___ $\mathrm{C}_{4} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}$	--m--

Answer Key

Multiple Choice	Matching		Written
1. B	1. A	1. $2,1,2,1$	Double replacement
2. D	2. B	2. $2,3,3,2$	Single replacement
3. B	3. D	3. $2,3,2$	Synthesis
4. D	4. F	4. $1,1,1$	Decomposition
5. D	5. E	5. $1,1,1$	Double replacement
6. C	6. B	6. $1,1,1,1$	Neutralization
7. A	7. C	7. $2,1,1,1$	Single replacement
8. C	8. D	8. $2,1,1,2$	Neutralization
9. C	9. C	9. $2,2,3$	Decomposition
11. B		10. 2, 13, 8, 10	Combustion
12. D			
13. C			
14. D			
15. A			

