- (f) decreases rate of reaction
- (g) increases rate of reaction
- (h) decreases rate of reaction
- (i) increases rate of reaction
- (j) increases rate of reaction

2.

	Situation X	Situation Y	Situation with a higher reaction rate (X or Y)	Factor affecting the rate of reaction
(a)	1 g of sugar (cubes)	1 gram of sugar (grains)	Y	surface area
(b)	50°C	O°C	Х	temperature
(c)	low number of particles = few collisions	high number of particles = more collisions	Y	concentration
(d)	enzyme added	no enzyme added	Х	catalyst
(e)	twigs	logs	Х	surface area

Applying Knowledge

Four factors affecting the rate of reactions Page 118

- 1. (a) line Y
 - (b) line X
 - (c) line Y
 - (d) line X
 - (e) line Y
 - (f) line X
 - (g) line Y
 - (h) line X
- 2. (a) surface area
 - (b) catalyst
 - (c) temperature
 - (d) concentration

Assessment

Factors affecting the rate of chemical reactions Page 119

1. D 2. C 3. A 4. B 5. E 6. F 7. D 8. B 9. D 10. B

Chapter 7 The atomic theory explains radioactivity.

Section 7.1 Atomic Theory Isotopes, and Radioactive Decay

Applying Knowledge

Isotopes

Page 123

- different atoms of a particular element that have the same number of protons but different numbers of neutrons
- 2. mass number
- 3. mass number
- 4. number of neutrons
- **5.** "13" represents the mass number; "5" represents the atomic number
- 6. boron-13 or B-13
- **7.** (a) 5
 - **(b)** 5
 - (c) 8
- 8. (a) neon with 11 neutrons
 - (b) sulphur with 16 neutrons
 - (c) actinium with 141 neutrons
 - (d) thorium with 144 neutrons

9.

Isotope	Standard atomic notation	Atomic number	Mass number	Number of protons	Number of neutrons
carbon-14	¹⁴ ₆ C	6	14	6	8
cobalt-52	⁵² ₂₇ Co	27	52	27	25
nickel-60	⁶⁰ ₂₈ Ni	28	60	28	32
nitrogen- 14	¹⁴ N	7	14	7	7
thallium- 201	²⁰¹ TI	81	201	81	120
radium- 226	²²⁶ ₈₈ Ra	88	226	88	138
lead-208	²⁰⁸ ₈₂ Pb	82	208	82	126

Comprehension

Alpha, beta, and gamma radiation Page 125

- diagram labelling: alpha particle (on the first line); beta particle (on the second line); gamma ray (on the third line)
- 2. (a) gamma ray
 - (b) beta particle
 - (c) alpha particle
 - (d) gamma ray

- (e) beta particle
- (f) alpha particle
- (g) alpha particle
- (h) beta particle
- (i) alpha particle, beta particle, and gamma ray
- (j) beta particle
- (k) alpha particle
- (I) beta particle
- (m) gamma ray
- (n) alpha particle and beta particle
- (o) gamma ray
- (p) gamma ray
- (q) gamma ray
- (r) alpha particle
- (s) gamma ray

Applying Knowledge Radioactive decay and nuclear equations

Page 126

1.
$$^{32}_{15}$$
 P \rightarrow S + $^{32}_{16}$ e or $^{0}_{-1}$ β $^{0}_{-1}$ BETA DECAY

2.
$$^{218}_{84}$$
 Po \rightarrow Pb + $^{214}_{82}$ He $^{4}_{2}$ ALPHA DECAY

3.
$$^{35}_{17}$$
 CI \rightarrow Ar $+^{35}_{5}$ e $^{0}_{-1}$ BETA DECAY

4.
$$^{24}_{12}$$
 Mg* \rightarrow Mg + $^{24}_{12}$ $\gamma^{\,0}_{\,0}$ GAMMA DECAY

5.
$$^{234}_{91}$$
 Pa \rightarrow Ac $+\,^{230}_{89}$ $\alpha\,^4_2$ ALPHA DECAY

6.
$$^{141}_{58}$$
 Ce \rightarrow Pr + e $^{141}_{59}$ $^{0}_{-1}$ BETA DECAY

7.
$$^{216}_{~84}\,\text{Po} \rightarrow \text{At} + \beta\,^{216}_{~85}\,^{~0}_{~-1}\,\text{BETA DECAY}$$

8.
$$^{20}_{9}$$
 F \rightarrow Ne + $^{20}_{10}$ e or $^{0}_{-1}$ β $^{0}_{-1}$ BETA DECAY

9.
$$^{58}_{26} \mbox{Fe}^{\star}
ightarrow$$
 Fe + $\gamma\,^{58}_{26}\,\,^{0}_{0}$ GAMMA DECAY

10.
$$^{225}_{89}\,\text{Ac}
ightarrow \text{Fr} + \,^{221}_{87}\, lpha\,\,^4_2\,\,\text{ALPHA DECAY}$$

11.
$$^{149}_{64}\,\text{Gd}^\star \to \text{Gd} + ^{149}_{64}\,\gamma \, ^0_0\,$$
 GAMMA DECAY

12.
$$^{226}_{88}$$
 Ra $ightarrow$ Rn + $^{222}_{86}$ $lpha$ or He 4_2 4_2 ALPHA DECAY

13.
$$^{212}_{81}$$
 TI \rightarrow Pb + $^{212}_{82}$ β $^{0}_{-1}$ BETA DECAY

14.
$$^{214}_{83}$$
 Bi \rightarrow TI + $^{210}_{81}$ α or $^{4}_{2}$ He $^{4}_{2}$ ALPHA DECAY

15.
$$^{254}_{98}$$
 Cf* \rightarrow Cf + $^{254}_{98}$ γ $^{0}_{0}$ GAMMA DECAY

Assessment

Atomic theory, isotopes, and radioactive decay Page 127

1. D **2.** A **3.** C **4.** C **5.** B **6.** B **7.** C **8.** A **9.** A **10.** A **11.** A **12.** C **13.** C **14.** D **15.** A **16.** C

Section 7.2 Half-Life

Applying Knowledge Radioactive decay

Page 132

- (a) the time required for half the nuclei in a sample of a radioactive isotope to decay; a constant for any radioactive isotope
 - **(b)** a curved line on a graph that shows the rate at which radioisotopes decay
 - (c) the isotope that undergoes radioactive decay
 - (d) the stable product of radioactive decay

2.

Half-life	Percent of parent isotope	Percent of daughter isotope
0	100	0
1	50	50
2	25	75
3	12.5	87.5
4	6.25	93.75

Half-life	Fraction of parent isotope	Fraction of daughter isotope
0	1	0
1	1/2	1/2
2	1/4	3/4
3	1/8	7/8
4	1 16	15 16

3. (a)

Half-life	Time (a)	Mass (g)
0	0	120
1	5	60
2	10	30
3	15	15
4	20	7.5
5	25	3.75

- **(b)** 3.75 g
- (c) 3 half-lives
- (d) 20 years
- (e) The graph should show a decay curve.

4. (a)

Half-life	Time (a)	Mass of parent isotope (g)	Mass of daughter isotope (g)
0	0	80	0
1	20	40	40
2	40	20	60
3	60	10	70
4	80	5	75
5	100	2.5	77.5

- **(b)** 5 g
- (c) 2.5 g
- (d) 70 g
- (e) 100 years
- (f) 1:3

Comprehension

Calculating half-life

Page 134

- 1. (a) $\frac{1}{8}$
 - **(b)** 6.25%
 - (c) $\frac{3}{4}$
 - (d) 96.875%
- **2.** 18 q
- **3.** 12.5%
- **4.** 48 g
- 5. 1420 million years old
- 6. 3.9 billion years old
- 7. 9 billion years
- **8.** 5 years
- **9.** 10 g

Analyzing Information

Decay curves

Page 135

- 1. (a) 2 days
 - **(b)** 20 g
 - **(c)** 70 g
 - (d) $\frac{1}{16}$
 - (e) 8 days
- 2. (a) potassium-40 and argon-40
 - (b) 1.3 billion years
 - (c) equal amounts of daughter and parent isotopes
 - (d) $\frac{15}{16}$
 - **(e)** 1:3

Assessment

Half-life

Page 136

1. D **2.** C **3.** B **4.** A **5.** C **6.** A **7.** C **8.** D **9.** B **10.** C **11.** B **12.** C

Section 7.3 Nuclear Reactions

Cloze Activity

Radioactivity

Page 140

- 1. nuclear fission
- 2. unstable
- 3. energy
- 4. nuclear reaction; isotope
- 5. subatomic particles
- 6. induced
- 7. proton
- 8. neutron
- 9. chain reaction
- 10. CANDU reactor
- 11. nuclear fusion; Sun

Comprehension

Comparing nuclear fission and fusion Page 141

1.

	Nuclear fission	Nuclear fusion	
description nucleus splits up into		two small nuclei combine to form one large nucleus	
		huge amounts of energy; neutron(s)	
Are the products are often radioactive?		products are not often radioactive	
What is needed for this nuclear reaction to occur?	a neutron	high temperature and sufficient pressure	
Where does this process occur?	induced fission in nuclear fission reactors; atom bombs	Sun; stars; hydrogen bombs	
Give an example of a nuclear equation. answers may vary ${}^1_0 n + {}^{235}_{92} \cup {}^{92}_{36} \operatorname{Kr} + {}^{141}_{56} \operatorname{Ba} + 3 {}^1_0 n + \operatorname{energe}$		answers may vary $_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He +$ $_{0}^{1}n + energy$	

2. (a) nuclear fusion

(b) nuclear fission

Applying Knowledge Nuclear fission and fusion reactions Page 142

- **1.** 3 ¹₀n, Fission ²³⁹₉₄ Pu
- **2.** 2 ²₁H, Fusion
- **3.** ⁸⁰₃₂Ge, Fission
- **4.** $_{0}^{1}$ n, Fusion
- **5.** ²³⁵₉₂ U, Fission
- **6.** $^{1}_{0}$ n, Fusion
- **7.** ¹¹³₄₆ Pd, Fission
- **8.** ¹²⁷₅₃ I, Fission
- **9.** 3_0^1 n, Fission
- **10.** $^{239}_{94}$ Pu, Fission

Assessment

Nuclear reactions

Page 143

1. B **2.** C **3.** B **4.** F **5.** A **6.** E **7.** D **8.** B **9.** C **10.** D **11.** C **12.** C **13.** B

UNIT 3 Motion

Chapter 8 Average velocity is the rate of change in position.

Section 8.1 The Language of Motion

Comprehension

Scalars versus vectors

Page 147

- (a) scalar: a quantity that has a magnitude but not a direction
 - **(b) vector:** a quantity that has both a magnitude and a direction
 - **(c)** magnitude: the size of a measurement or an amount
 - (d) reference point: the point from which the change is measured

2.

Quantity	Symbol	SI Unit	Scalar or Vector
time	t	s (seconds)	scalar
time interval	Δt	s (seconds)	scalar
distance	d	m (metres)	scalar
position	₫	m (metres)	vector
displacement	$\Delta \vec{d}$	m (metres)	vector

- 3. (a) V (b) S (c) S (d) V
- 4. (a) positive (+)
 - (b) negative (-)
 - (c) positive (+)
 - (d) negative (-)

Applying Knowledge Distance, position, and displacement Page 148

1.

<i>t</i> _i (s)	<i>t</i> _f (s)	∆ <i>t</i> (s)	<i>d</i> _i (m)	<i>d</i> _f (m)	∆ <i>d</i> (m)	Direction of Motion
6.0	7.5	1.5	+18.4	+22.6	+4.2	right
5.7	8.5	2.8	+24.3	+30.1	+5.8	up
20.2	38.4	18.2	+39.1	+24.8	-14.3	south
12.4	18.8	6.4	+54.8	+46.2	-8.6	west

- 2. (a) 12 m
 - **(b)** 0 m
- 3. (a)

Time	Position
0 min	0 m
1 min	180 m [E]
2 min	40 m [E]
3 min	140 m [E]