Chapter 9 Practice Problems (and some chapter 8 too)

1. (Chapter 8 Problem)

What is the average velocity of this object during the time interval of $5 \mathrm{~s}-10 \mathrm{~s}$?

2. You are riding your bicycle travelling forward at $6 \mathrm{~m} / \mathrm{s}$. You need to get somewhere in a hurry, so you increase your velocity to $11 \mathrm{~m} / \mathrm{s}$ forward.
a) What is your change in velocity?
b) It took you 2 seconds to increase your velocity from $6 \mathrm{~m} / \mathrm{s}$ forward to $11 \mathrm{~m} / \mathrm{s}$ forward. What was your acceleration?
3. A truck goes through a special traffic zone ($8.33 \mathrm{~m} / \mathrm{s}$ speed limit) with a forward velocity of $60 \mathrm{~km} / \mathrm{h}$. A police officer records the speed. Should the officer give the truck driver a speeding ticket? (How fast was the driver going in m / s ? OR what is the speed limit in km / h ?)
4. Your older brother is driving the family car forward through a school zone at an unreasonable $18 \mathrm{~m} / \mathrm{s}$. He slams on the brakes and brings the car to rest in 1.5 seconds. What was the acceleration of the car? (Remember that acceleration is a vector!)
5. What is the average acceleration of this object between:
a) $0 \mathrm{~s}-10 \mathrm{~s}$?
b) $10 \mathrm{~s}-30 \mathrm{~s}$?
c) $30 \mathrm{~s}-70 \mathrm{~s}$?

6. At what time(s) is this object not moving?

7. A motorcycle is travelling north at $11 \mathrm{~m} / \mathrm{s}$. How much time would it take for the motorcycle to increase its velocity up to $26 \mathrm{~m} / \mathrm{s}$ [N] if it accelerated at $3.0 \mathrm{~m} / \mathrm{s}^{2}$?
8. A skier moving $6.0 \mathrm{~m} / \mathrm{s}$ forward begins to slow down, accelerating at $-2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 1.5 s , What is the skier's velocity at the end of the 1.5 s ?
9. A ball is launched in the air. How much time does it take to go from $30 \mathrm{~m} / \mathrm{s}$ up to $10.4 \mathrm{~m} / \mathrm{s}$ up?
10. A) A burning couch is thrown down from the top of a very tall building with a downward velocity of $11 \mathrm{~m} / \mathrm{s}$. What is the velocity of the couch after 5 s ?
B) Take your answer from part A) and convert it into km / h.
11.A small lapdog, scared by a squirrel, changes its velocity from $6.0 \mathrm{~m} / \mathrm{s}$ forward to $4.0 \mathrm{~m} / \mathrm{s}$ backward in 2.0s. What is the acceleration of the dog?
12. Draw a velocity time graph and draw four labelled lines on it to describe the following situations:
a) A car starting from rest, then accelerating to the right.
b) A car starting from rest, then accelerating quickly to the right, then traveling with uniform motion to the right.
c) A car traveling to the left with uniform motion, then slowing down and stopping.
d) A car is traveling to the right and slowing down until it stops. It stays stopped for a few moments then accelerates backwards (left), drives backwards (left) with uniform motion, then stops.

Answers:

1. $-3 \mathrm{~m} / \mathrm{s}$
2. A) $5 \mathrm{~m} / \mathrm{s}$ forward
B) $2.5 \mathrm{~m} / \mathrm{s}^{2}$ forward
3. Yes, give a ticket. Speed Limit $=30 \mathrm{~km} / \mathrm{h}$ (29.99) OR Driving at $16.7 \mathrm{~m} / \mathrm{s}$
4. $-12 \mathrm{~m} / \mathrm{s}^{2}$ ($12 \mathrm{~m} / \mathrm{s}^{2}$ backwards)
5. A) $+2 \mathrm{~m} / \mathrm{s}^{2}$
B) $0 \mathrm{~m} / \mathrm{s}^{2}$
C) $-0.5 \mathrm{~m} / \mathrm{s}^{2}$
6. $\mathrm{t}=0 \mathrm{~s}$ and $\mathrm{t}=70 \mathrm{~s}$
7. 5.0 s
8. $3.0 \mathrm{~m} / \mathrm{s}$ forward
9. 2 s
10.A) $60 \mathrm{~m} / \mathrm{s}$ down $(-60 \mathrm{~m} / \mathrm{s}$)
B) $216 \mathrm{~km} / \mathrm{h}$ down $(-216 \mathrm{~km} / \mathrm{h})$
$11 .-5 \mathrm{~m} / \mathrm{s}^{2}\left(5 \mathrm{~m} / \mathrm{s}^{2}\right.$ backwards)
10.

