
2. (a) nuclear fusion

Applying Knowledge Nuclear fission and fusion reactions Page 142

1. 3^{1}_{0} n, Fission $^{239}_{94}$ Pu

- **2.** 2^{2}_{1} H, Fusion
- 3. ⁸⁰₃₂Ge, Fission
- **4.** $^{1}_{0}$ n, Fusion
- 5. 235 U, Fission
- **6.** $^{1}_{0}$ n, Fusion
- 7. ¹¹³₄₆ Pd, Fission
- 8. ¹²⁷₅₃ I, Fission
- 9. 3¹₀n, Fission
- 10. ²³⁹₉₄ Pu, Fission

Assessment **Nuclear reactions**

Page 143

1. B 2. C 3. B 4. F 5. A 6. E 7. D 8. B 9. C 10. D 11. C 12. C 13. B

UNIT 3 Motion

Chapter 8 Average velocity is the rate of change in position.

Section 8.1 The Language of Motion

Comprehension

Scalars versus vectors Page 147

- 1. (a) scalar: a quantity that has a magnitude but not a direction
 - (b) vector: a quantity that has both a magnitude and a direction
 - (c) magnitude: the size of a measurement or an amount
 - (d) reference point: the point from which the change is measured

2.

Quantity	Symbol	SI Unit	Scalar or Vector
time	t	s (seconds)	scalar
time interval	Δt	s (seconds)	scalar
distance	d	m (metres)	scalar
position	đ	m (metres)	vector
displacement	Δđ	m (metres)	vector

3. (a) ∨ (b) S (c) S (d) ∨

- 4. (a) positive (+)
 - (b) negative (-)
 - (c) positive (+)
 - (d) negative (-)

Applying Knowledge

Distance, position, and displacement Page 148

1.

t _i (s)	<i>t</i> _f (s)	∆ <i>t</i> (s)	<i>d</i> _i (m)	<i>d_f</i> (m)	∆ <i>d</i> (m)	Direction of Motion
6.0	7.5	1.5	+18.4	+22.6	+4.2	right
5.7	8.5	2.8	+24.3	+30.1	+5.8	up
20.2	38.4	18.2	+39.1	+24.8	-14.3	south
12.4	18.8	6.4	+54.8	+46.2	-8.6	west

2. (a) 12 m

(b) 0 m

3. (a)

Time	Position
0 min	0 m
1 min	180 m [E]
2 min	40 m [E]
3 min	140 m [E]

Time Interval	Distance Travelled	Displacement
0 min–1 min	180 m	180 m [E]
1 min–2 min	140 m	140 [W]
2 min–3 min	100 m	100 m [E]

(b) 420 m

(c) 140 m [E]

Comprehension

Positive, negative, and zero slopes Page 150

- 1. Graph B
- 2. Graph A
- 3. Graph C
- 4. Graphs A, B and C
- 5. Graph B
- 6. Graph C
- 7. Graph A

Analyzing Information Uniform motion Page 151

1. (a) non-uniform motion

(b) uniform motion

(c) non-uniform motion

2.

Time Interval	Slope of Line	Description of Motion
0 s–10 s	positive	The object is moving to the right of the origin with uniform motion.
10 s–15 s	zero	The object is at rest.
15 s–30 s	negative	The object is moving back toward the origin with uniform motion.
30 s–40 s	negative	The object is moving to the left of the origin with uniform motion.
40 s–55 s	positive	The object is moving back toward the origin with uniform motion.

- 3.10 s-15 s
- 4.15 s-30 s
- 5. 0-2 s and 7-12 s
- 6. pacing backward away from the bus stop
- 7. pacing forward toward the bus stop
- 8.2 m in front of the bus stop
- 9. -8m, that is 8 m backward
- 10. 20 m
- 11.0 m

Assessment The language of motion Page 153

1. E 2. D 3.	B 4. G 5.	F 6. A 7. C 8.	A 9. B	10. D 11. D
--------------	-----------	----------------	---------------	-------------

Section 8.2 Applying Knowledge

Applying Knowledge

Calculating average velocity

```
Page 156
1. (a) U_{av} = \frac{\Delta \vec{d}}{\Delta t}
       (b) \Delta \vec{d} = \vec{v}_{av} \Delta t
       (c) \Delta t = \frac{\Delta \vec{d}}{\vec{v}_{av}}
```

2.

Displacement	Time	Average	Formula Used and Calculation Shown
Displacement	IIIIC	Velocity	Formula USEU and Galculation Shown
15.6 m	3 s	5.2 m/s	$\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{15.6}{3} = 5.2 \text{ m/s}$
357.5 km	6.5 h	55 km/h	$\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{357.5}{6.5} = 55 \text{ km/h}$
22.6 m	4 s	5.65 m/s	$\Delta t = \frac{\Delta d}{\vec{v}_{av}} = \frac{22.6}{5.65} = 4 \text{ s}$
243.75 km	3.25 h	75 km/h	$\Delta \vec{d} = \vec{v}_{av} \Delta t = 75 \times 3.25 =$ 243.75 km
12.6 m	3.15 s	4 m/s	$\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{12.6}{3.15} = 4 \text{ m/s}$
24 km	0.75 h	32 km/h	$\Delta t = \frac{\Delta \vec{d}}{\vec{v}_{av}} = \frac{24}{32} = 0.75 \text{ h}$
480 m	8 s	60 m/s	$\Delta \vec{d} = \vec{v}_{av} \Delta t = 60 \times 8 = 480 \text{ m}$

- 3. (a) 150 s
 - (b) 70 s
 - (c) 255 m [E]
 - (d) 14 s
 - (e) 0.375 km/min
 - (f) 800 000 a (years)
 - (g) 0.65 km, or 650 m

Applying Knowledge Slopes of position-time graphs Page 157

- 1. average velocity
- 2. uniform motion; constant velocity
- 3. Slope is the change in the vertical distance divided by the change in the horizontal distance.
- **4.** slope = $\frac{\text{rise}}{\text{run}}$
- 5.

Line	Rise	Run	Slope Calculation	Slope
Α	4	15	4 ÷ 15	0.27 m/s
В	0	20	0 ÷ 20	0 m/s
С	8	5	8 ÷ 5	1.6 m/s
D	-6	15	-6 ÷ 15	–0.4 m/s

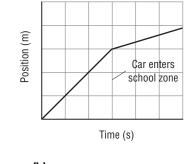
Analyzing Information Analyzing position-time graphs Page 158

1. (a)

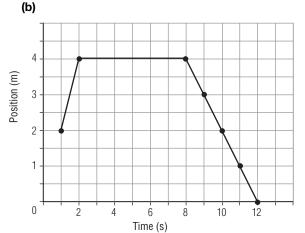
Time Interval	Displacement	Average Velocity
0 s–2 s	0 m	0 m/s
2 s–5 s	–3 m	-1 m/s
5 s–7s	+ 5 m	+ 2.5 m/s
7 s–12 s	0 m	0 m/s
12 s–14 s	–8 m	-4 m/s
14 s–16 s	+ 4 m	+ 2 m/s
16 s–18 s	0 m	0 m/s
18 s–19 s	+ 2 m	+ 2 m/s
19 s–20 s	0 m	0 m/s

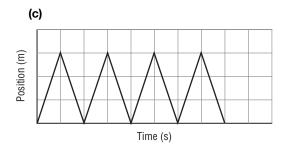
(b) at 14 seconds

- 2. (a) C
 - (b) E
 - (c) B
 - (d) D
 - (e) F


 - (f) A
- 3. (a) The y-intercept represents the position at which the runner starts.
 - (b) No. Runner B starts out farther ahead than Runner A.
 - (c) Runner B is running faster at 2 s because Runner B has a steeper slope than Runner A.
 - (d) At 5 s, both runners are at the same position.
 - (e) Runner A is ahead at 10 s.

Extension Activity


Constructing and interpreting position-time graphs


Page 160

- 1. (a) Graph should have a negative slope crossing the x-axis at 5 s.
 - (b) 3 seconds
 - (c) 100 m [E]
 - (d) -12.5 m [W]
 - (e) -25 m/s
 - (f) The car is moving westward toward the origin with constant velocity.

2. (a)

Assessment

Average velocity

Page 162

1. B 2. C 3. A 4. D 5. A 6. A 7. B 8. D 9. C 10. B 11. C 12. C 13. D 14. A

Chapter 9 Acceleration is the rate of change in velocity.

Section 9.1 Describing Acceleration

Cloze Activity Velocity and acceleration Page 166

- 1. vector, speed
- 2. positive
- 3. negative

⁽c) 0 m