2. (a) nuclear fusion

(b) nuclear fission

Applying Knowledge
Nuclear fission and fusion reactions
Page 142

1. $3{ }_{0}^{1} \mathrm{n}$, Fission ${ }_{94}^{239} \mathrm{Pu}$
2. $2{ }_{1}^{2} \mathrm{H}$, Fusion
3. ${ }_{32}^{80} \mathrm{Ge}$, Fission
4. ${ }_{0}^{1} n$, Fusion
5. ${ }_{92}^{235} \mathrm{U}$, Fission
6. ${ }_{0}^{1} \mathrm{n}$, Fusion
7. ${ }_{46}^{113} \mathrm{Pd}$, Fission
8. ${ }_{53}^{127}$ I, Fission
9. $3{ }_{0}^{1} \mathrm{n}$, Fission
10. ${ }_{94}^{239} \mathrm{Pu}$, Fission

Assessment

Nuclear reactions
Page 143

1. B 2. C 3. B 4. F 5. A 6. E 7. D 8. B 9. C 10. D 11. C 12. C 13. B

UNTT 3 Motion

Chapter 8 Average velocity is the rate of change in position.

Section 8.1 The Language of Motion

Comprehension

Scalars versus vectors
Page 147

1. (a) scalar: a quantity that has a magnitude but not a direction
(b) vector: a quantity that has both a magnitude and a direction
(c) magnitude: the size of a measurement or an amount
(d) reference point: the point from which the change is measured
2.

Quantity	Symbol	SI Unit	Scalar or Vector
time	t	s (seconds)	scalar
time interval	Δt	s (seconds)	scalar
distance	d	m (metres)	scalar
position	\vec{d}	m (metres)	vector
displacement	$\Delta \vec{d}$	m (metres)	vector

3. (a) \vee (b) S (c) $S(d) \vee$
4. (a) positive (+)
(b) negative (-)
(c) positive (+)
(d) negative (-)

Applying Knowledge

Distance, position, and displacement
Page 148
1.

$\boldsymbol{t}_{\mathbf{i}}(\mathbf{s})$	$\boldsymbol{t}_{\mathbf{f}} \mathbf{(s)}$	$\Delta \boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{d}_{\mathbf{i}}(\mathbf{m})$	$\boldsymbol{d}_{\mathbf{f}} \mathbf{(m)}$	$\Delta \boldsymbol{d}(\mathbf{m})$	Direction of Motion
6.0	7.5	$\mathbf{1 . 5}$	+18.4	+22.6	$\mathbf{+ 4 . 2}$	right
$\mathbf{5 . 7}$	8.5	2.8	+24.3	$\mathbf{+ 3 0 . 1}$	+5.8	up
20.2	$\mathbf{3 8 . 4}$	18.2	$\mathbf{+ 3 9 . 1}$	+24.8	-14.3	south
12.4	18.8	$\mathbf{6 . 4}$	$\mathbf{+ 5 4 . 8}$	+46.2	-8.6	west

2. (a) 12 m
(b) 0 m
3. (a)

Time	Position
0 min	0 m
1 min	$\mathbf{1 8 0} \mathbf{~ m}[\mathrm{E}]$
2 min	$40 \mathrm{~m}[\mathrm{E}]$
3 min	$\mathbf{1 4 0} \mathbf{~ m}[\mathrm{E}]$

Time Interval	Distance Travelled	Displacement
$0 \mathrm{~min}-1 \mathrm{~min}$	180 m	$\mathbf{1 8 0} \mathbf{~ m}[\mathrm{E}]$
$1 \mathrm{~min}-2 \mathrm{~min}$	$\mathbf{1 4 0} \mathbf{~ m}$	$\mathbf{1 4 0}[\mathrm{~W}]$
$2 \mathrm{~min}-3 \mathrm{~min}$	$\mathbf{1 0 0} \mathbf{~ m}$	$100 \mathrm{~m}[\mathrm{E}]$

(b) 420 m
(c) $140 \mathrm{~m}[\mathrm{E}]$

Comprehension

Positive, negative, and zero slopes
Page 150

1. Graph B
2. Graph A
3. Graph C
4. Graphs A, B and C
5. Graph B
6. Graph C
7. Graph A

Analyzing Information

Uniform motion

Page 151

1. (a) non-uniform motion
(b) uniform motion
(c) non-uniform motion
2.

Time Interval	Slope of Line	Description of Motion
$0 \mathrm{~s}-10 \mathrm{~s}$	positive	The object is moving to the right of the origin with uniform motion.
$10 \mathrm{~s}-15 \mathrm{~s}$	zero	The object is at rest.
$15 \mathrm{~s}-30 \mathrm{~s}$	negative	The object is moving back toward the origin with uniform motion.
$30 \mathrm{~s}-40 \mathrm{~s}$	negative	The object is moving to the left of the origin with uniform motion.
$40 \mathrm{~s}-55 \mathrm{~s}$	positive	The object is moving back toward the origin with uniform motion.

3. $10 \mathrm{~s}-15 \mathrm{~s}$
4. $15 \mathrm{~s}-30 \mathrm{~s}$
5. 0-2 s and 7-12 s
6. pacing backward away from the bus stop
7. pacing forward toward the bus stop
8. 2 m in front of the bus stop
9. -8 m , that is 8 m backward
10. 20 m
11. 0 m

Assessment

The language of motion

Page 153

1. E 2. D 3. B 4. G 5. F 6. A 7. C 8. A 9. B 10. D 11. D

Section 8.2 Applying Knowledge

Applying Knowledge

Calculating average velocity
Page 156

1. (a) $\mathrm{U}_{\mathrm{av}}=\frac{\Delta \vec{d}}{\Delta t}$
(b) $\Delta \vec{d}=\vec{v}_{\mathrm{av}} \Delta t$
(c) $\Delta t=\frac{\Delta \vec{d}}{\vec{v}_{\mathrm{av}}}$
2.

Displacement	Time	Average Velocity	Formula Used and Calculation Shown
15.6 m	3 s	$5.2 \mathrm{~m} / \mathrm{s}$	$\vec{v}_{\mathrm{av}}=\frac{\Delta \vec{d}}{\Delta t}=\frac{15.6}{3}=5.2 \mathrm{~m} / \mathrm{s}$
357.5 km	6.5 h	$55 \mathrm{~km} / \mathrm{h}$	$\vec{v}_{\mathrm{av}}=\frac{\Delta \vec{d}}{\Delta t}=\frac{357.5}{6.5}=55 \mathrm{~km} / \mathrm{h}$
22.6 m	4 s	$5.65 \mathrm{~m} / \mathrm{s}$	$\Delta t=\frac{\Delta d}{\overrightarrow{\vec{v}_{\mathrm{av}}}}=\frac{22.6}{5.65}=4 \mathrm{~s}$
243.75 km	3.25 h	$75 \mathrm{~km} / \mathrm{h}$	$\begin{aligned} & \Delta \vec{d}=\vec{v}_{\mathrm{av}} \Delta t=75 \times 3.25= \\ & 243.75 \mathrm{~km} \end{aligned}$
12.6 m	3.15 s	$4 \mathrm{~m} / \mathrm{s}$	$\vec{v}_{\mathrm{av}}=\frac{\Delta d}{\Delta t}=\frac{12.6}{3.15}=4 \mathrm{~m} / \mathrm{s}$
24 km	0.75 h	$32 \mathrm{~km} / \mathrm{h}$	$\Delta t=\frac{\Delta \dot{d}}{\vec{v}_{\mathrm{av}}}=\frac{24}{32}=0.75 \mathrm{~h}$
480 m	8 s	$60 \mathrm{~m} / \mathrm{s}$	$\Delta \vec{d}=\vec{v}_{\text {av }} \Delta t=60 \times 8=480 \mathrm{~m}$

3. (a) 150 s
(b) 70 s
(c) $255 \mathrm{~m}[\mathrm{E}]$
(d) 14 s
(e) $0.375 \mathrm{~km} / \mathrm{min}$
(f) 800000 a (years)
(g) 0.65 km , or 650 m

Applying Knowledge
 Slopes of position-time graphs
 Page 157

1. average velocity
2. uniform motion; constant velocity
3. Slope is the change in the vertical distance divided by the change in the horizontal distance.
4. slope $=\frac{\text { rise }}{\text { run }}$
5.

Line	Rise	Run	Slope Calculation	Slope
A	4	15	$4 \div 15$	$0.27 \mathrm{~m} / \mathrm{s}$
B	0	20	$0 \div 20$	$0 \mathrm{~m} / \mathrm{s}$
C	8	5	$8 \div 5$	$1.6 \mathrm{~m} / \mathrm{s}$
D	-6	15	$-6 \div 15$	$-0.4 \mathrm{~m} / \mathrm{s}$

Analyzing Information
Analyzing position-time graphs
Page 158

1. (a)

Time Interval	Displacement	Average Velocity
$0 \mathrm{~s}-2 \mathrm{~s}$	0 m	$0 \mathrm{~m} / \mathrm{s}$
$2 \mathrm{~s}-5 \mathrm{~s}$	-3 m	$-1 \mathrm{~m} / \mathrm{s}$
$5 \mathrm{~s}-7 \mathrm{~s}$	+5 m	$+2.5 \mathrm{~m} / \mathrm{s}$
$7 \mathrm{~s}-12 \mathrm{~s}$	0 m	$0 \mathrm{~m} / \mathrm{s}$
$12 \mathrm{~s}-14 \mathrm{~s}$	-8 m	$-4 \mathrm{~m} / \mathrm{s}$
$14 \mathrm{~s}-16 \mathrm{~s}$	+4 m	$+2 \mathrm{~m} / \mathrm{s}$
$16 \mathrm{~s}-18 \mathrm{~s}$	0 m	$0 \mathrm{~m} / \mathrm{s}$
$18 \mathrm{~s}-19 \mathrm{~s}$	+2 m	$+2 \mathrm{~m} / \mathrm{s}$
$19 \mathrm{~s}-20 \mathrm{~s}$	0 m	$0 \mathrm{~m} / \mathrm{s}$

(b) at 14 seconds
(c) 0 m
2. (a) C
(b) E
(c) B
(d) D
(e) F
(f) A
3. (a) The y-intercept represents the position at which the runner starts.
(b) No. Runner B starts out farther ahead than Runner A .
(c) Runner B is running faster at 2 s because Runner B has a steeper slope than Runner A.
(d) At 5 s , both runners are at the same position.
(e) Runner A is ahead at 10 s .

Extension Activity
Constructing and interpreting position-time graphs
Page 160

1. (a) Graph should have a negative slope crossing the x-axis at 5 s .
(b) 3 seconds
(c) $100 \mathrm{~m}[\mathrm{E}]$
(d) $-12.5 \mathrm{~m}[\mathrm{~W}]$
(e) $-25 \mathrm{~m} / \mathrm{s}$
(f) The car is moving westward toward the origin with constant velocity.

2. (a)

(b)

(c)

Time (s)

Assessment

Average velocity
Page 162

1. B 2. C 3. A 4. D 5. A 6. A 7. B 8. D 9. C 10. B 11. C
2. C 13. D 14. A

Chapter 9 Acceleration is the rate of change in velocity.

Section 9.1 Describing Acceleration

Cloze Activity

Velocity and acceleration
Page 166

1. vector, speed
2. positive
3. negative
